
A Privacy Preserving Machine Learning System
Alexander Wu, Hank O’Brien, Joseph Gonzalez, John Kubiatowicz

Future Work
Our first priority in the near term is finishing the Signal integration and fixing our ONNX issues with GPUs. On a more medium 
term however, we think adding features like supporting ML models that accept multiple data points and running the ML models 
in containers with heavily restricted IO permissions to provide further isolation and protection in this scheme. There is also a 
good deal of long-term future work in two areas, 1) developing a new UTE for desktop and mobile applications, and 2) extend-
ing the security of the TTC to support remote attestation and verifiable computing from secure enclave technologies like Intel 
SGX. Furthermore, there is a good deal more work we could do to further improve overall system latency, such as by initiating 
the model fetch and the data fetch in parallel when the model is not already on the TTC, or some form of dynamic data repli-
cation where the more a model is used in a particular TTC, the more likely it becomes that the data for this model is located 
nearer this TTC geographically. This will significantly reduce the model fetch time, which is on the inference critical path.

System Overview

1.	App Developer creates a new ML model, encrypts* it, and uploads it to one or more KV 
Stores
a.	 the model is encrypted with the keys for a TTC, if the author wishes to support multiple 

TTCs, multiple copies of the model are uploaded, each encrypted with a different key
2.	App Developer creates a new application with an embedded UTE
3.	User uploads user data to the UTE
4.	UTE returns a DataDescriptor to the App
5.	App developer tells the UTE to publish the user data to a particular KV store and to pre-

pare it for a particular TTC
6.	Data is encrypted by the UTE and uploaded to the KV store
7.	Application initiates a serve request with a model handle and data handle
8.	TTC downloads model and handle from (potentially different) KV Stores and decrypts 

both, and runs the model on this data
9.	TTC re-encrypts the inference result and uploads it to a KV store
10.	 Application receives a response handle and asks UTE to receive the corresponding re-

sult
11.	 UTE downloads and decrypts the inference result and renders it to the user

Overview

* Crypto has not yet been fully implemented, but we are working on using the Signal Protocol 
to establish an asynchronous, end-to-end encrypted channel between the UTE and TTC

Cryptography
Cryptographic hardening primarily relies upon the Signal Protocol, a well-established asynchronous double ratchet protocol. 
The protocol establishes a confidential channel between the UTE and TTC. Here, we use the abstraction that each machine 
is assigned its own identity key. This public component of the key can be signed by a certificate authority in less secure set-
tings. In more secure settings, remote attestation can be used to prove that the key originated from an enclave, and that was 
generated and secured by a publicly available program. Note that this abstraction does not prevent traditional scaling and 
load balancing techniques which involve secure key sharing schemes.

UI Example

The first observation here is that we should aim to place the model on a KV Store with 
as low latency as possible to the TTC. We see this here when the model is on Azure as it 
must be downloaded to the TTC hosted on computers in RISE before any inference can 
take place, but because our design is serverless and we have not yet implemented any 
sort of model-prefetching, this becomes part of the critical path. This effect is actually even 
more pronounced than these charts suggest; we were unable to get our ONNX runtime to 
utilize the GPUs available on these machines, but if we were, then we anticipate the infer-
ence stage (in yellow) being an order of magnitude faster which would make the orange 
“model download” contribute in an even more outsized way than it currently does. These 
tests were all done on a machine with 2, 24-core, 2.6GHz Haswell-generation Intel Xeon 
processors with 256GB DDR4 RAM and about a 1Gbps network connection (estimated 
from running speed tests from the machine). 

Results

Model: Resnet50v2 
(90MB compressed)
Input data: a 1.7MB 
photo
Output Data: ~20B of 
text
n=40

Abstract
It is generally agreed that machine learning models may contain intellectual property which 
should not be shared with users, while at the same time there should be mechanisms in 
place to prevent the abuse of sensitive user data. We propose a machine learning infer-
ence system which provides an end-to-end preservation of privacy for both a machine 
learning model developer and user. Our system aims to minimize its constraints on the 
expressiveness and accuracy of machine learning models. Our system achieves this by 
utilizing trusted computation, with a trust-performance tradeoff which extends to a cryp-
tographic proof that data is not tampered with.

We use the browser’s built in iframe isolation policy to enforce the untrusted app/UTE barrier 
and we utilize a message passing interface to communicate between our iframes and the un-
trusted app. The TTC is a separate product from a third-party infrastructure provider and in its 
most secure form would use secure enclaves to provide privacy 

Network Critical Path

Inference time was 
omitted from this 
graph because it 
was relatively con-
stant at about 3.40 
seconds per test 
and we wanted to 
highlight the impact 
of network latency 
on our approach


